H=-16t^2+25t+90

Simple and best practice solution for H=-16t^2+25t+90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+25t+90 equation:



=-16H^2+25H+90
We move all terms to the left:
-(-16H^2+25H+90)=0
We get rid of parentheses
16H^2-25H-90=0
a = 16; b = -25; c = -90;
Δ = b2-4ac
Δ = -252-4·16·(-90)
Δ = 6385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{6385}}{2*16}=\frac{25-\sqrt{6385}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{6385}}{2*16}=\frac{25+\sqrt{6385}}{32} $

See similar equations:

| 4x-3x+3/12=1 | | 3(3-8x)=81 | | -155=-10x-5 | | 25=16(1.2)^2+40t | | 0.8=1.8X10n | | 0.18=1.8×10n | | -3p+4-5=4p-8 | | 25=-16(1.4)^2+40t | | 8+7k=7k | | 7^x+4=49^2x-1 | | 25=-16(1.2)^2+40t | | 25=-16(1.25)^2+40t | | 25=-16(2.50)^2+40t | | √-7y+8=y | | 25=-16t^2+40(2.50) | | 7(y+2)=-35 | | -12x+4=-7-16 | | 22=-3(2x+3) | | h=16(1.5^2)+40(1.5) | | h=16(1.5^2)+40(3) | | h=-16(3^2)+40(1.5) | | h=-16(1.5^2)+40(3) | | h=-16(3^2)+40(3) | | h=-16(1.5^2)+40(1.5) | | h=-16(1^2)+40(1) | | x(5x-4)=7 | | (4x(2)-3x-2)-(2x(2)+2x+7)=0 | | 6+x=60+x×25/100 | | 4^6=8x | | (3a+7)-(2a+5)=0 | | 11x^2+33x-74=0 | | 3x=8-4x^2 |

Equations solver categories